Existence theorems for a nonlinear second-order distributional differential equation
نویسندگان
چکیده
منابع مشابه
Existence of Solutions for a Nonlinear Fractional Order Differential Equation
Let D denote the Riemann-Liouville fractional differential operator of order α. Let 1 < α < 2 and 0 < β < α. Define the operator L by L = D − aD where a ∈ R. We give sufficient conditions for the existence of solutions of the nonlinear fractional boundary value problem Lu(t) + f(t, u(t)) = 0, 0 < t < 1, u(0) = 0, u(1) = 0.
متن کاملOn Fuzzy Solution for Exact Second Order Fuzzy Differential Equation
In the present paper, the analytical solution for an exact second order fuzzy initial value problem under generalized Hukuhara differentiability is obtained. First the solution of first order linear fuzzy differential equation under generalized Hukuhara differentiability is investigated using integration factor methods in two cases. The second based on the type of generalized Hukuhara different...
متن کاملExistence of Periodic Solutions for a Second Order Nonlinear Neutral Functional Differential Equation
We study the existence of periodic solutions of the second order nonlinear neutral differential equation with variable delay x′′ (t) + p (t)x′ (t) + q (t)h (x (t)) = c (t)x′ (t− τ (t)) + f (t, x (t− τ (t))) . We invert the given equation to obtain an integral, but equivalent, equation from which we define a fixed point mapping written as a sum of a large contraction and a compact map. We show t...
متن کاملExistence of Periodic Solutions for a Second Order Nonlinear Neutral Differential Equation with Functional Delay
In this article we study the existence of periodic solutions of the second order nonlinear neutral differential equation with functional delay d dt x (t) + p (t) d dt x (t) + q (t) x (t) = d dt g (t, x (t− τ (t))) + f ` t, x (t) , x (t− τ (t)) ́ . The main tool employed here is the Burton-Krasnoselskii’s hybrid fixed point theorem dealing with a sum of two mappings, one is a large contraction an...
متن کاملExistence of Homoclinic Orbit for Second-order Nonlinear Difference Equation
By using the Mountain Pass Theorem, we establish some existence criteria to guarantee the second-order nonlinear difference equation ∆ [p(t)∆u(t − 1)] + f(t, u(t)) = 0 has at least one homoclinic orbit, where t ∈ Z, u ∈ R.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of King Saud University - Science
سال: 2018
ISSN: 1018-3647
DOI: 10.1016/j.jksus.2017.04.009